【Augmented Reality】Characterisation and mapping of scattered radiation fields in interventional radiology theatres

https://ift.tt/3oAgsYp


  1. 1.

    IXRPC. International recommendations for X-ray and radium protection. Br. J. Radiol. 7, 695–699 (1934).

    Article 

    Google Scholar
     

  2. 2.

    Stewart, F. A. et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 41, 1–322 (2012).

    CAS 
    Article 

    Google Scholar
     

  3. 3.

    Ciraj-Bjelac, O. et al. Occupational exposure of the eye lens in interventional procedures: how to assess and manage radiation dose. J. Am. Coll. Radiol. 13, 1347–1353 (2016).

    Article 

    Google Scholar
     

  4. 4.

    Minamoto, A. et al. Cataract in atomic bomb survivors. Int. J. Radiat. Biol. 80, 339–345 (2004).

    CAS 
    Article 

    Google Scholar
     

  5. 5.

    ICRP 2011 Statement on Tissue Reactions (n.d.)

  6. 6.

    Behrens, R. On the operational quantity Hp(3) for eye lens dosimetry. J. Radiol. Prot. 32, 455–464 (2012).

    CAS 
    Article 

    Google Scholar
     

  7. 7.

    ICRP. Draft Joint Report of ICRU and ICRP for consultation: operational quantities for external radiation exposure.

  8. 8.

    Racine, D. et al. Objective comparison of high-contrast spatial resolution and low-contrast detectability for various clinical protocols on multiple CT scanners. Med. Phys. 44, e153–e163 (2017).

    Article 

    Google Scholar
     

  9. 9.

    FOPH. Audits in the OR-areas of Swiss Hospitals. (2020).

  10. 10.

    Sánchez, R. M. et al. Staff doses in interventional radiology: a national survey. J. Vasc. Interv. Radiol. 23, 1496–1501 (2012).

    Article 

    Google Scholar
     

  11. 11.

    Silberstein, L. XXXIV. Spectral composition of an X-ray radiation determined from its filtration curve. Lond. Edinb. Dublin Philos. Mag. J. Sci. 15, 375–394 (1933).

    CAS 
    Article 

    Google Scholar
     

  12. 12.

    Mayneord, W. V. & Roberts, J. E. The “quality” of high voltage radiations. I.. Br. J. Radiol. 8, 341–364 (1935).

    Article 

    Google Scholar
     

  13. 13.

    Twidell, J. W. The determination of X-ray spectra using attenuation measurements and a computer program. Phys. Med. Biol. 15, 529 (1970).

    CAS 
    Article 

    Google Scholar
     

  14. 14.

    Sundararaman, V., Prasad, M. A. & Vora, R. B. Computed spectra from diagnostic and therapeutic X-ray tubes. Phys. Med. Biol. 18, 208 (1973).

    CAS 
    Article 

    Google Scholar
     

  15. 15.

    Stanton, L., Lightfoot, D. A. & Mann, S. A penetrameter method for field kV calibration of diagnostic X-ray machines. Radiology 87, 87–98 (1966).

    CAS 
    Article 

    Google Scholar
     

  16. 16.

    Peaple, L. H. J. & Burt, A. K. The measurement of spectra from X-ray machines. Phys. Med. Biol. 14, 73 (1969).

    CAS 
    Article 

    Google Scholar
     

  17. 17.

    Seelentag, W. W., Panzer, W., Drexler, G., Platz, L. & Santner, F. A Catalogue of Spectra for the Calibration of Dosemeters. https://inis.iaea.org/Search/search.aspx?orig_q=RN:11531730. (1979).

  18. 18.

    Birch, R. & Marshall, M. Computation of bremsstrahlung X-ray spectra and comparison with spectra measured with a Ge(Li) detector. Phys. Med. Biol. 24, 505–517 (1979).

    CAS 
    Article 

    Google Scholar
     

  19. 19.

    Castro, E. D., Pani, R., Pellegrini, R. & Bacci, C. The use of cadmium telluride detectors for the qualitative analysis of diagnostic X-ray spectra. Phys. Med. Biol. 29, 1117–1131 (1984).

    Article 

    Google Scholar
     

  20. 20.

    Miyajima, S., Imagawa, K. & Matsumoto, M. CdZnTe detector in diagnostic x-ray spectroscopy. Med. Phys. 29, 1421–1429 (2002).

    CAS 
    Article 

    Google Scholar
     

  21. 21.

    Medipix collaboration. Medipix website. Medipix (2017).

  22. 22.

    Llopart, X., Ballabriga, R., Campbell, M., Tlustos, L. & Wong, W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods Phys. Res. 581, 485–494 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  23. 23.

    ADVACAM. ADVACAM: Imaging the unseen. https://advacam.com/.

  24. 24.

    Ballabriga, R. The Design and Implementation in 0.13 um CMOS of an Algorithm Permitting Spectroscopic Imaging with High Spatial Resolution for Hybrid Pixel Detectors. (Universitat Ramon Llull, 2009).

  25. 25.

    Jakubek, J. Precise energy calibration of pixel detector working in time-over-threshold mode. Nucl. Instrum. Methods Phys. Res. 633, S262–S266 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  26. 26.

    Nowak, M., Tlustos, L., Carbonez, P., Verdun, F. R. & Damet, J. Characterisation of the impacts of the environmental variables on Timepix3 Si sensor hybrid pixel detector performance. Nucl. Instrum. Methods Phys. Res. 981, 164502 (2020).

    CAS 
    Article 

    Google Scholar
     

  27. 27.

    Marshall, N. W., Faulkner, K. & Warren, H. Measured scattered x-ray energy spectra for simulated irradiation geometries in diagnostic radiology. Med. Phys. 23, 1271–1276 (1996).

    CAS 
    Article 

    Google Scholar
     

  28. 28.

    Kalyvas, N. Measurement of scatter radiation spectrum from radiographic units. Med. Phys. https://doi.org/10.1594/ECR2013/C-0309 (2013).

    Article 

    Google Scholar
     

  29. 29.

    Rehn, E. Modeling of Scatter Radiation During Interventional X-ray Procedures (Linköping University, Linköping, 2015).


    Google Scholar
     

  30. 30.

    Ciraj-Bjelac, O., Carinou, E. & Vanhavere, F. Use of active personal dosimeters in hospitals: EURADOS survey. J. Radiol. Prot. 38, 702–715 (2018).

    CAS 
    Article 

    Google Scholar
     

  31. 31.

    Hupe, O., Friedrich, S., Vanhavere, F. & Brodecki, M. Determining the dose rate dependence of different active personal dosemeters in standardized pulsed and continuous radiation fields. Radiat. Prot. Dosimetry https://doi.org/10.1093/rpd/ncz173 (2019).

    Article 
    PubMed 

    Google Scholar
     

  32. 32.

    Mori, H., Koshida, K., Ishigamori, O. & Matsubara, K. Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields. Radiol. Phys. Technol. 7, 158–166 (2014).

    Article 

    Google Scholar
     

  33. 33.

    McCaffrey, J. P., Tessier, F. & Shen, H. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians: Radiation shielding materials and radiation scatter for IR. Med. Phys. 39, 4537–4546 (2012).

    CAS 
    Article 

    Google Scholar
     

  34. 34.

    Bott, O. J., Dresing, K., Wagner, M., Raab, B.-W. & Teistler, M. Informatics in radiology: use of a C-arm fluoroscopy simulator to support training in intraoperative radiography. RadioGraphics 31, E65–E75 (2011).

    Article 

    Google Scholar
     

  35. 35.

    Loy Rodas, N. A global radiation awareness system using augmented reality and Monte Carlo simulations. RadioGraphics https://doi.org/10.1594/ECR2018/C-1615 (2018).

    Article 

    Google Scholar
     

  36. 36.

    O. fédéral de la santé publique. Vidéos de formation pour les établissements médicaux. https://www.bag.admin.ch/bag/fr/home/gesetze-und-bewilligungen/gesuche-bewilligungen/bewilligungen-aufsicht-im-strahlenschutz/informationen-fuer-medizinische-betriebe/schulungsfilme-medizinische-betriebe.html.

  37. 37.

    Duggan, L., Hood, C., Warren-Forward, H., Haque, M. & Kron, T. Variations in dose response with x-ray energy of LiF:Mg, Cu, P thermoluminescence dosimeters: implications for clinical dosimetry. Phys. Med. Biol. 49, 3831–3845 (2004).

    CAS 
    Article 

    Google Scholar
     

  38. 38.

    Al-Senan, R. M. & Hatab, M. R. Characteristics of an OSLD in the diagnostic energy range: characteristics of OSLDs in diagnostic energy range. Med. Phys. 38, 4396–4405 (2011).

    Article 

    Google Scholar
     

  39. 39.

    Asahara, T. et al. Exposure dose measurement during diagnostic pediatric X-ray examination using an optically stimulated luminescence (OSL) dosimeter based on precise dose calibration taking into consideration variation of X-ray spectra. Radiat. Meas. 119, 209–219 (2018).

    CAS 
    Article 

    Google Scholar
     

发表评论

电子邮件地址不会被公开。 必填项已用*标注